ψ_2 (3823) $$I^G(J^{PC}) = 0^-(2^{--})$$ I, J, P need confirmation. was $\psi(3823)$, X(3823) Seen by BHARDWAJ 13 in $B o \ \chi_{c1} \, \gamma \, K$ and ABLIKIM 15S in $e^+e^- ightarrow \ \pi^+\pi^-\gamma\chi_{c1}$ decays as a narrow peak in the invariant mass distribution of the $\chi_{c1}\gamma$ system. Properties consistent with the $\psi_2(1^3D_2)$ $c\overline{c}$ state. ### ψ_2 (3823) MASS | VALUE (MeV) EVTS | DOCUMENT ID | TECN | COMMENT | |-------------------------------------|--------------------------|------|--| | 3823.7 \pm 0.5 OUR AVERAGE | | | | | $3824.08 \pm 0.53 \pm 0.14$ 137 | | | $B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$ | | $3821.7 \pm 1.3 \pm 0.7 19 \pm 5$ | ² ABLIKIM 159 | BES3 | $e^+e^- \rightarrow \pi^+\pi^-\chi_{c1}\gamma$ | | $3823.1 \pm 1.8 \pm 0.7 33 \pm 10$ | ³ BHARDWAJ 13 | BELL | $B^{\pm} \rightarrow \chi_{c1} \gamma K^{\pm}$ | $^{^{1}}$ Using the measured $m_{\psi_{2}(3823)} - m_{\psi(2S)} = 137.98 \pm 0.53 \pm 0.14$ MeV. # $m_{\psi_2(3823)} - m_{\psi(25)}$ VALUE (MeV) DOCUMENT ID TECN COMMENT <u>EVTS</u> • • We do not use the following data for averages, fits, limits, etc. ¹ AAIJ 20s LHCB $B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$ $137.98 \pm 0.53 \pm 0.14$ ¹ AAIJ 20s also reports $m_{\chi_{c1}(3872)} - m_{\psi_2(3823)} = 47.50 \pm 0.53 \pm 0.13$ MeV. # $\psi_{2}(3823)$ WIDTH | VALUE (MeV) | CL% | DOCUMENT ID | | TECN | COMMENT | |---|-----|-------------|-------------|------|--| | < 5.2 | 90 | AAIJ | 20 S | LHCB | $B^+ \rightarrow J/\psi \pi^+ \pi^- K^+$ | | and Manda mak was the fallowing data for average fits limited at a con- | | | | | | We do not use the following data for averages, fits, limits, etc. <16 90 2 ABLIKIM 15S BES3 $e^+e^- \rightarrow \pi^+\pi^-\chi_{c1}\gamma_{c24}$ 90 3 BHARDWAJ 13 BELL $B^\pm \rightarrow \chi_{c1}\gamma_{c1}\gamma_{c2}$ ² From a simultaneous unbinned maximum likelihood fit of $e^+e^- ightarrow ~\pi^+\pi^-\chi_{c1}\gamma$ data (the $\pi^+\pi^-$ recoil mass) taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to simulated events including both $\psi(2S) \to \chi_{c1} \gamma$ and $\psi_2(3823) \to \chi_{c1} \gamma$ together, with floating mass scale offset for $\psi(2S)$, floating $\psi_2(3823)$ mass, and zero $\psi_2(3823)$ width, resulting in a significance of 5.9 σ when including systematic uncertainties. 3 From a simultaneous fit to $B^\pm \to (\chi_{c1} \gamma) K^\pm$ and $B^0 \to (\chi_{c1} \gamma) K^0_S$ with significance 4.0 σ including systematics. Corrected for the measured $\psi(2S)$ mass using $B \to \psi(2S) K_S \to (\chi_{c1} \gamma) K_S \to (\chi_{c2} K_$ $[\]psi(2S)K \rightarrow (\gamma \chi_{c1})K$ decays. $^{^1}$ AAIJ 20S also provides a limit of < 6.6 MeV with 95% CL. ² From a fit of $e^+e^- \to \pi^+\pi^-\chi_{c1}\gamma$ data (the $\pi^+\pi^-$ recoil mass) taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to a Breit-Wigner function with the mass fixed from the likelihood fit above, Gaussian resolution smearing, and floating width. ³ From a simultaneous fit to $B^\pm \to (\chi_{c1}\gamma) K^\pm$ and $B^0 \to (\chi_{c1}\gamma) K^0_S$ with significance $^{4.0\}sigma$ including systematics. ### ψ_2 (3823) DECAY MODES Branching fractions are given relative to the one **DEFINED AS 1**. | | Mode | Fraction (Γ_i/Γ) | Confidence level | | | | |-----------------------|----------------------------|--|------------------|--|--|--| | $\overline{\Gamma_1}$ | $J/\psi(1S)\pi^+\pi^-$ | < 0.06 | 90% | | | | | Γ_2 | $J/\psi(1S)\pi^{0}\pi^{0}$ | < 0.11 | 90% | | | | | Γ_3 | $J/\psi(1S)\pi^0$ | < 0.030 | 90% | | | | | Γ_4 | $J/\psi(1\mathcal{S})\eta$ | < 0.14 | 90% | | | | | Γ_5 | $\chi_{c0}\gamma$ | < 0.24 | 90% | | | | | Γ_6 | $\chi_{c1}\gamma$ | DEFINED AS 1 | | | | | | Γ ₇ | $\chi_{c2}\gamma$ | $0.28 \begin{array}{l} +0.14 \\ -0.11 \end{array}$ | | | | | ### ψ_2 (3823) BRANCHING RATIOS $\Gamma igl(J/\psi(1S) \pi^+ \pi^- igr)/\Gamma_{ ext{total}}$ Γ_1/Γ • • • We do not use the following data for averages, fits, limits, etc. • • • DOCUMENT ID TECN COMMENT $$\Gamma(J/\psi(1S)\pi^+\pi^-)/\Gamma(\chi_{c1}\gamma)$$ $VALUE$ $CL\%$ T_1/Γ_6 $$\Gamma(J/\psi(1S)\pi^0\pi^0)/\Gamma(\chi_{c1}\gamma)$$ VALUE C1% 90 1 ABLIKIM 210 ECN COMMENT $e^+e^- \rightarrow \pi^+\pi^- X$ $$\Gamma(J/\psi(1S)\eta)/\Gamma(\chi_{c1}\gamma)$$ VALUE C1.4 90 C1.6 DOCUMENT ID TECN COMMENT COMMENT 1 ABLIKIM 210 BES3 $e^+e^- \rightarrow \pi^+\pi^- X$ ¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^-\to\pi^+\pi^-X$. ¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^-\to\pi^+\pi^-X$. ¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^-\to\pi^+\pi^-X$. ¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^-\to\pi^+\pi^-X$. ¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^- \to \pi^+\pi^- X$. $\Gamma(\chi_{c0}\gamma)/\Gamma_{total}$ Γ_5/Γ DOCUMENT ID TECN__COMMENT • We do not use the following data for averages, fits, limits, etc. • • ¹ ABLIKIM 210 BES3 $e^+e^- \to \pi^+\pi^- X$ not seen ¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^- \rightarrow \pi^+\pi^- X$. $\Gamma(\chi_{c1}\gamma)/\Gamma_{total}$ Γ_6/Γ <u>V</u>ALUE **EVTS** ¹ BHARDWAJ 33 + 10• We do not use the following data for averages, fits, limits, etc. 210 BES3 $e^+e^- \to \pi^+\pi^- X$ 210 BES3 $e^+e^- \to \pi^0\pi^0 X$ ² ABLIKIM seen ³ ABLIKIM 16 ± 5 seen ¹ BHARDWAJ 13 reports B($B^{\pm} \to \psi_2(3823) K^{\pm}$) × B($\psi_2(3823) \to \gamma \chi_{c1}$) = (9.7 ± 2.8 ± 1.1) \times 10^{-6} with statistical significance 3.8 σ . ² From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^- \to \pi^+\pi^- X$. Signal has a 11.8 ³ From a fit of the invariant $\pi^0 \pi^0$ recoil-mass distribution. Signal has a 4.3 σ significance. $\Gamma(\chi_{c0}\gamma)/\Gamma(\chi_{c1}\gamma)$ **VALUE** 210 BES3 $e^+e^- \to \pi^+\pi^- X$ <0.24 ¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^-\to\pi^+\pi^-X$. $\Gamma(\chi_{c2}\gamma)/\Gamma_{\text{total}}$ Γ_7/Γ DOCUMENT ID TECN COMMENT • • We do not use the following data for averages, fits, limits, etc. 210 BES3 $e^+e^- \rightarrow \pi^+\pi^- X$ ¹ ABLIKIM ² ABLIKIM 15s BES3 $e^+e^- \rightarrow \pi^+\pi^-\chi_{c2}\gamma$ ³ BHARDWAJ 13 BELL $B^\pm \rightarrow \chi_{c2}\gamma K^\pm$ not seen not seen ¹ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^-\to\pi^+\pi^-X$. Signal has a 3.2 σ ² From a simultaneous unbinned maximum likelihood fit of $e^+e^- ightarrow ~\pi^+\pi^-\chi_{c2}\gamma$ data (the $\pi^+\pi^-$ recoil mass) taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to simulated events including both $\psi(2S) \to \chi_{c2} \gamma$ and $\psi_2(3823) \to \chi_{c2} \gamma$ together, with floating mass scale offset for $\psi(2S)$, $\psi_2(3823)$ mass floating (fixed to that above), and zero $\psi_2(3823)$ width. ³BHARDWAJ 13 reports B($B^{\pm} \rightarrow \psi_2(3823)K^{\pm}$) \times B($\psi_2(3823) \rightarrow \gamma \chi_{c2}$) $< 3.6 \times$ 10^{-6} at 90% CL. $\Gamma(\chi_{c2}\gamma)/\Gamma(\chi_{c1}\gamma)$ Γ_7/Γ_6 DOCUMENT ID TECN COMMENT 210 BES3 $e^+e^-_{\pi^+\pi^-} \chi_{c2} \gamma$ ¹ ABLIKIM • • • We do not use the following data for averages, fits, limits, etc. • • | < 0.42 | 90 | ² ABLIKIM | 15 S | BES3 | $e^+e^ \rightarrow$ | |--------|----|----------------------|-------------|------|-------------------------------| | < 0.41 | 90 | BHARDWAJ | 13 | BELL | $B^{\pm} ightarrow$ | | | | | | | $\chi_{c1/c2} \gamma K^{\pm}$ | $^{^1}$ From a simultaneous unbinned maximum likelihood fit of the $\pi^+\pi^-$ recoil mass distributions of seven decay channels in the process $e^+e^-\to\pi^+\pi^-X$. 2 From a simultaneous unbinned maximum likelihood fit of $e^+e^-\to\pi^+\pi^-\chi_{c1(2)}\gamma$ ### ψ_2 (3823) REFERENCES | ABLIKIM | 210 | PR D103 L091102 | M. Ablikim et al. | (BESIII Collab.) | |----------|-----|-----------------|---------------------------|------------------| | AAIJ | 20S | JHEP 2008 123 | R. Aaij <i>et al.</i> | (LHCb Collab.) | | ABLIKIM | 15S | PRL 115 011803 | M. Ablikim et al. | (BESIII Collab.) | | BHARDWAJ | 13 | PRL 111 032001 | V. Bhardwaj <i>et al.</i> | (BELLE Collab.) | ² From a simultaneous unbinned maximum likelihood fit of $e^+e^- \rightarrow \pi^+\pi^-\chi_{c1(2)}\gamma$ data (the $\pi^+\pi^-$ recoil mass) taken at \sqrt{s} values of 4.23, 4.26, 4.36, 4.42, and 4.60 GeV to simulated events including both $\psi(2S) \rightarrow \chi_{c1(2)}\gamma$ and $\psi_2(3823) \rightarrow \chi_{c1(2)}\gamma$ together, with floating mass scale offset for $\psi(2S)$, $\psi_2(3823)$ mass floating (fixed to that above), and zero $\psi_2(3823)$ width.